Strong commutativity preserving maps in prime rings with involution
نویسندگان
چکیده
منابع مشابه
On Generalized Derivations and Commutativity of Prime Rings with Involution
Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...
متن کاملOn strong commutativity-preserving maps
Let R be a ring with center Z(R). We write the commutator [x, y] = xy− yx, (x, y ∈ R). The following commutator identities hold: [xy,z] = x[y,z] + [x,z]y; [x, yz] = y[x,z] + [x, y]z for all x, y,z ∈ R. We recall that R is prime if aRb = (0) implies that a= 0 or b = 0; it is semiprime if aRa = (0) implies that a = 0. A prime ring is clearly a semiprime ring. A mapping f : R→ R is called centrali...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملon centralizers of prime rings with involution
let $r$ be a ring with involution $*$. an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$. the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.06.036